

Philadelphia University Faculty of -Engineering------Department of –Mechanical engineering------

	<u>Course Syllabus</u>
Course Title: Applied Mechanics	Course code: 620214
	Course prerequisite (s) and/or co requisite (s):
Course Level: 2	Calculus, Physics
Lecture Time: 10:10-11:00	Credit hours: 3

		<u>Academic Staff</u> <u>Specifics</u>		
Name	Rank	Office Number and Location	Office Hours	E-mail Address
Dr. S. Ammourah	Assistant professor	Mechanical Eng. Dept E61308	11-12 11:15-12:15	sammourah@philadelphia.edu.jo

Course description:

In this course students will learn how to build a foundation of analytical capability for the solution of engineering problems that describe force and motion, which is in other words to familiarize with Newton's laws in motion.

Course objectives:

- Analyze and solve problems containing equilibrium of rigid bodies.
- Solve problems concerning force acceleration, energy, and momentum.

Course components

- Books (title, author (s), publisher, year of publication)
 - 1. Engineering mechanics: Statics, Hibbeler and Maxwell, 10th edition
 - 2. Engineering mechanics: Dynamics, Hibbeler and Maxwell, 10th edition

Teaching methods:

Lectures, discussion groups, problem solving, debates.

Learning outcomes:

• Knowledge and understanding

The student should be able to deal with equilibrium problems for both rigid bodies and particles. Also, the student should be familiar with both kinetics and kinematics of particles and rigid bodies.

• Cognitive skills (thinking and analysis).

The students should link the concepts that they are learning with the real applications by giving live examples where the subject concepts are applied.

• Communication skills (personal and academic).

Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects
- Quizzes.
- Home works
- Final examination: 50 marks

Documentation and academic honesty

• Documentation style (with illustrative examples)

the students will be given the key solution after each exam to compare with their answers as well as the marking scheme. If any has an objection then the supervisor should consider it based on the key solution and the marking scheme. If the student has extra marks then he it should be added to him

• Avoiding plagiarism.

The university has strict rules about plagiarism and it will be considered where it is necessary.

Course/module academic calendar

week	Basic and support material to be covered	Homework/reports and their due dates
(1)	Statics of a particle	Quiz at the end of the chapter
(2)	Rigidbodies:EquivalentSystem offorces	Quiz out at the end of the chapter.
(3)	Rigid bodies: Equivalent System of forces	
(4)	Equilibrium of Rigid	Quiz at the end of the

	bodies	chapter.
(5)	Equilibrium of Rigid	-
	bodies	
(6)	Equilibrium of Rigid	
First examination	bodies	
(7)	Distributed forces:	Quiz at the end of the
	Moment of inertia	chapter.
(8)	Distributed forces:	_
	Moment of inertia	
(9)	Kinematics of rigid	Quiz at the end of the
	bodies	chapter and small
(10)	Kinematics of rigid	related project
	bodies	
(11)	Plane Motion of	Quiz at the end of the
Second examination	Rigid bodies: Force	chapter
	and Acceleration	
(12)	Plane Motion of	
	Rigid bodies: Force	
	and Acceleration	
(13)	Plane Motion of	
	Rigid bodies: Force	
	and Acceleration	
(14)	Plane Motion of	Quiz at the end of the
	Rigid bodies: Energy	chapter
	and Momentum	
(15)	Plane Motion of	
Specimen examination	Rigid bodies: Energy	
(Optional)	and Momentum	
(16)	Revision	
Final Examination		

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

- 1. Vector Mechanics for engineers: Statics and Dynamics, P. Beer and E. Johnston, McGraw Hill.
- 2. Engineering Mechanics, Statics. J.L. Meriam and L.G. Kraige, Willy.
- 3. Engineering Mechanics, Dynamics. J.L. Meriam and L.G. Kraige, Willy.